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We introduce a new near real-time solution for the tokamak resistive MHD D0 matrix. By extending

state transition matrix methods introduced in [Glasser et al., Phys. Plasmas 25(3), 032507 (2017)]

and leveraging the asymptotic methods of [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)], we

have developed STRIDE—State Transition Rapid Integration with DCON (Asymptotic)

Expansions—a code that solves for D0 in <500 ms. The resistive MHD stability remains a foremost

challenge in successful tokamak operation, and its numerically demanding analysis has received

attention for many years. Our code substantially improves upon the speed and robustness of earlier D0

calculation methods, affording solutions for previously intractable equilibria and helping enable the

real-time control of ideal and resistive MHD tokamak stability. In this paper, we pedagogically

review tearing stability analysis and motivate and define D0 in the slab, cylindrical, and toroidal

geometries. We also benchmark STRIDE against the calculations of [Nishimura et al., Phys. Plasmas

5, 4292–4299 (1998)] and Furth et al. [Phys. Fluids 16, 1054 (1973)] for D0 in a cylindrical geometry,

and the D0 matrix calculations of [A. H. Glasser, Phys. Plasmas 23, 112506 (2016)] in the full toroidal

geometry. Published by AIP Publishing. https://doi.org/10.1063/1.5029477

I. INTRODUCTION

Resistive magnetohydrodynamic (RMHD) stability

remains a foremost challenge in successful tokamak opera-

tion. In tokamaks such as JET6 and DIII-D,7 neoclassical

tearing modes have been shown to degrade tokamak perfor-

mance by elevating radial transport and, still worse, causing

disruptions. At DIII-D, such observations in ITER Baseline

Scenario shots raise concerns about the tearing stability of

ITER. It is in this context that we address the need for

improved tools to analyze tokamaks’ RMHD stability.

The RMHD model suggests that plasma resistivity

makes little contribution to the stability of magnetic pertur-

bations in tokamaks, except crucially when the magnetic per-

turbation lies parallel to the background magnetic field. In a

Fourier decomposition of such a perturbation, this condition

corresponds to the perturbation’s wavenumber k lying per-
pendicular to the background field, k � B0 ¼ 0. The effects

of resistivity on such a perturbation were first analyzed in the

study by Furth et al.8 in a slab geometry where it was shown

that a first-order magnetic perturbation of the form

B1ðxÞ ¼ B1ðyÞ exp iðkxxþ kzzÞ½ �ect (1)

can give rise to the tearing mode, opening up “islands” in the

magnetic topology.

This analysis was later generalized to curvilinear geom-

etries. In a toroidal geometry, for example, the Fourier per-

turbation exp ½iðmhþ n/Þ� has an angular wavenumber

characterized by its poloidal and toroidal mode numbers (m,

n), respectively. The k � B0 ¼ 0 condition has the toroidal

analog q ¼ m=n, where the safety factor q—defined as the

relative pitch angle of magnetic lines of force, q � d/
dh—takes

rational values. Since modes of low toroidal number n are

generally the most unstable and since q spans a finite range

over the plasma profile—1 < q < 10 for most tokamak pro-

files—it is common to explore primarily the finite set of

Fourier modes (m, n) for which low-n rational surfaces

fw� j qðw�Þ ¼ m=n; n � 1g appear in the plasma profile.

The localized importance of resistivity near such ratio-

nal surfaces suggests two feasible approaches toward the

analysis of tearing mode stability in tokamaks: (i) The first

approach is taken by codes—such as MARS9—that solve the

full RMHD equations over the entirety of the plasma profile.

This technique has the benefit of solving the full physical

equations everywhere but is limited in scope to calculating a

single stability eigenvalue at a time; it also has difficulty

resolving stable eigenvalues due to the continuous MHD

spectrum in the stable range. The latter feature limits its util-

ity in control applications, in particular where a measure of

the “distance-to-instability-boundary” may be useful in the

analysis of stable equilibria.1 (ii) The second, “external/inter-

nal region” approach, is taken by codes—such as resistive

DCON5—that treat the rational surfaces as effective bound-

ary layers. In particular, resistive DCON ignores the negligi-

ble plasma resistivity in “external regions” (far from the

singular surfaces) by solving the ideal MHD equations in

those regions. It then asymptotically matches the ideal MHD

external solutions to “inner region” RMHD solutions, which

are solved only very near the singular surfaces.

The latter approach, analyzed in depth for the toroidal

case in the study by Glasser et al.,10 simultaneously solves

for the stability eigenvalues of all perturbed modes of a

given profile (truncated at some n � 1 and some large m). It

has the advantages of speed and wide-spectrum information,

which make this approach particularly suitable for active

feedback control of tokamak plasmas. This method has the

drawback of requiring asymptotic matching, which can be

especially challenging in low-b regions of the plasma—such
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as the tokamak edge.5 The difficulty of generating accurate

asymptotic expansions in low b, often referred to as the

“overlap problem,” is a subject of active research.

Historically, the “external/internal region” approach of

codes such as resistive DCON was the first used to conduct

tearing stability analysis, appearing alongside the discovery

of the tearing mode by Furth et al. in Ref. 8. That work

introduced the D0 parameter in the slab model as an asymp-

totic matching criterion—a parameter derived by solving

the external region equations and used as boundary con-

straints for the inner region solution. As we will discuss at

length in Sec. II, in a tokamak geometry, the corresponding

D0 matrix is, similarly, a characterization of asymptotic

matching criteria found by solving the external region

equations.

Given its appropriateness to our purposes, we will pur-

sue the “external/internal region” approach to tearing stabil-

ity analysis in the remainder of this paper and improve upon

known methods by introducing a state transition matrix solu-

tion for D0. A robust solution for the D0 boundary value prob-

lem (BVP) in the external regions of a toroidal geometry has

remained an open challenge for many years. The singularity

of the ideal MHD equations at a tokamak’s rational surfaces,

and their stiffness particularly near the magnetic axis,2 make

the external solutions to the ideal MHD equations quite

numerically challenging.

In a cylindrical geometry, Nishimura et al.3 solved the

external regions by a shooting method that shot outward and

away from the rational surface, attempting to satisfy bound-

ary conditions at the magnetic axis and plasma edge. In that

work, the BVP solution was achieved by a Newton iteration,

which iteratively reduced the error of the shot’s boundary

conditions until convergence. While effective for most cylin-

drical equilibria, this iterative method has two notable

limitations:

• First, it does not seize upon the linearity of the ideal MHD

differential equations. If enough shots are simultaneously

taken to span the finite solution space of a linear ordinary

differential equation (ODE)—and this is only two shots in

the cylindrical ideal MHD case—a viable solution will

exist as a linear combination of the resulting integrations,

obviating the less robust iteration. Linearity furthermore

affords a decomposition of the domain of integration, as

described in Ref. 1, allowing for its parallelized, rapid

solution.
• Second, the shot outward from a single rational surface is

limited to a cylindrical geometry; the presence of multiple

singular surfaces and the coupling of Fourier modes in the

tokamak geometry unavoidably multiply the required

number of shots.

In the full toroidal geometry, resistive DCON5 has more

recently approached the challenge of solving the external

ideal MHD regions via a Galerkin expansion, as first sug-

gested in Ref. 11 and adapted in Refs. 12 and 13. While

effective in most cases, Galerkin expansions by their nature

cover only a (finite element) subspace of the possible solu-

tion space, which limits their accuracy as compared to direct

integration methods—especially for singular ODEs.

Furthermore, known implementations for the Galerkin

method in the external regions do not guarantee the existence

of solutions for ideal-MHD-unstable plasmas, limiting their

usefulness in high-throughput real-time stability analysis—

as we will discuss in Sec. V.

In this paper, we thoroughly address the above limita-

tions and develop a solution for D0 in cylindrical and toroidal

geometries which is fast and robust. The STRIDE code

extends the state transition matrix Riccati techniques intro-

duced in Ref. 1 for ideal MHD stability calculations.

STRIDE makes abundant use of the linearity of the ideal

MHD equations to divide the D0 BVP integration into subin-

tervals, associating to each its fundamental matrix of solu-

tions. It integrates away from all singular surfaces and

stitches together ODE solutions by enforcing continuity cri-

teria at each subinterval interface. It then solves these conti-

nuity and boundary conditions simultaneously as a large

sparse matrix problem, rendering the D0 BVP as an algebraic

equation.

The resulting solution provides the external region

matching criteria for “resonant” modes at singular surfa-

ces—precisely the information stored in the D0 matrix.

STRIDE avoids a costly Newton iteration, leverages the

linearity of the ODE to “shoot” (a linearly complete set of

modes) once on each subinterval, and sidesteps a Galerkin

expansion which may be ill-posed for ideal-MHD-unstable

equilibria. We will show that the parallelized, state transi-

tion matrix integration of the complete solution space

affords greater robustness and speed than previously known

approaches.

The remainder of this paper is organized as follows: In

Sec. II, we review at length the definitions of D0 in the slab,

cylindrical, and toroidal contexts. In Sec. III, we extend the

techniques of Ref. 1 to develop a solution method for the

cylindrical geometry D0, comparing our results with Refs. 3

and 4. In Sec. IV, we complete this development to solve the

full toroidal D0 matrix problem with our STRIDE code; we

compare our method’s results against those of resistive

DCON.5 In Sec. V, we discuss numerical advantages of

STRIDE and some limitations of the Galerkin approach. In

Sec. VI, we discuss our conclusions.

II. A BRIEF REVIEW OF D0 IN TEARING MODE
STABILITY ANALYSIS

A. The slab geometry D0 of Furth et al.

The D0 parameter was first introduced by Furth et al.8 in

a plasma slab geometry, for which the background magnetic

field B0ðxÞ ¼ x̂Bx0ðyÞ þ ẑBz0ðyÞ has only y-dependence.

That work considered a first order magnetic perturbation of

the RMHD equations, given by

@q
@t
þ $ � qvð Þ ¼ 0; (2)

q
dv

dt
¼ J� B� $p; (3)

@B

@t
¼ $� v� Bð Þ þ g

l0

$2B; (4)
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d

dt

p

qc

� �
¼ 0: (5)

We recall the definition of the dimensionless Lundquist

number

S � sR

sA
�

a2=
g
l0

� �
a=vAð Þ ¼

avA

g=l0

; (6)

where a is the plasma width, g is the plasma resistivity, and

vA � Bffiffiffiffiffiffi
l0q
p is the Alfv�en velocity. In the (ideal MHD) S!1

and xsA � 1 limit—after introducing a slab perturbation in

the form of Eq. (1) and taking b � p
B2=2l0

¼ 0—it can be

demonstrated that the linearized RMHD equations reduce to

an ideal MHD equation for the perturbed mode with wave-

number k

B00y1 � k2 þ F00

F

� �
By1 ¼ 0; (7)

where primes denote derivatives with respect to the y coordi-

nate and where F � FðyÞ � k � B0. This equation is specific

to a single mode k, indicating that perturbed modes are

decoupled in the slab model for ideal MHD.

S 	 107 in a typical tokamak, and so, the ideal MHD

Eq. (7) holds to high accuracy everywhere in the plasma,

except where the equation is singular.13,14 We see that a sin-

gularity occurs at y� when Fðy�Þ ¼ 0; this is an indication

that in a layer near the singularity, the simplified ODE is

nonphysical, and a full resistive treatment is required to

solve for the magnetic perturbation.

At a finite distance � from this layer at the singularity,

we may solve Eq. (7) as follows: Boundary conditions are

imposed at some distance on either side of y�

By1jy¼6a ¼ 0; (8)

and the two outer regions ð�a; y� � �Þ and ðy� þ �; aÞ may

be solved independently. The two solutions are found to

have a discontinuous jump in their derivatives at y�, which is

used to define

D0 � lim
�!0

B0y1ðy� þ �Þ � B0y1ðy� � �Þ
By1ðy�Þ

¼ lim
�!0

B0y1

By1

" #y�þ�

y���
: (9)

As we next show, this D0 parameter stores the information

which must be taken from the outer solution to determine the

tearing stability of the slab model.

In the slab model, the inner layer may be approached by

assuming the simplest model of plasma resistivity—setting g
constant in the induction equation, as in Eq. (4). The first

order perturbation of the y component of Eq. (4) can be inte-

grated to find an inner layer solution that asymptotically satis-

fies the value of D0 in Eq. (9). In particular, denoting the inner

layer perturbed solutions by ~B1 and ~v1 and noting that the

Laplace operator is dominated by the variation in y near the

singularity, asymptotic matching is achieved by requiring that

g
l0

D0 
 g
l0

~B
0
y1

~By1

" #þ1
�1
	 1

~By1

ðþ1
�1

c~By1 � ðik � B0Þ~vy1

� �
dy; (10)

where we have set $� ðv� BÞ 	 ðB0 � $Þv1 and where


 indicates asymptotic agreement in the limit that the outer

region solutions approach y� and the inner region solutions

extend to 61. (Although its derivative ~B
0
y1 varies consider-

ably over the inner region, ~By1 may be treated as constant in

the inner region.) The first (asymptotic) equality of Eq. (10)

demonstrates how the D0 parameter sets the asymptotic match-
ing criteria for the inner layer equation in the slab model.

The RMHD equations can be used to solve for ~By1 and ~vy1

in the expression above. Under the assumptions of a narrow

resistive layer and plasma incompressibility (i.e., $ � v1 ¼ 0),

one finds that Eq. (10) can be solved for c—the growth rate of

the tearing mode, whose sign dictates the mode’s stability. It

turns out15 that signðD0Þ ¼ signðcÞ, and indeed, c is given by

c ¼ 0:55ðD0aÞ4=5

s2=5
A s3=5

R

; (11)

where the characteristic Alfv�enic and resistive timescales sA and

sR, respectively, are defined in Eq. (6). In summary, the tearing

modes of the slab model are decoupled in the sense that their

governing equations are independent of one another. In particu-

lar, for each mode of wavenumber k for which a singular point

exists in the plasma (k � B0 ¼ 0), there is an associated stability

parameter D0ðkÞ determined solely by this mode. D0ðkÞ is fur-

thermore in one-to-one correspondence with the growth rate of

the mode—c—sharing its sign and crossing zero at the same

time. This decoupling between modes, and the direct relation-

ship between D0 and tearing stability, are features of the slab

model that persist in a cylindrical geometry. As we shall see,

however, these features will no longer hold in the toroidal case.

B. The cylindrical D0

The cylindrical analog of Eq. (7) is given by the ideal

MHD Newcomb equation3,4,16

w
w0

� �0
¼

0 1
1

H

g

F2
þ 1

F
HF0ð Þ0

� �
�H0

H

0
@

1
A w

w0

� �
; (12)

where Br1 ¼ wðrÞ exp ½xtþ iðkzzþ mhÞ� represents a radial

magnetic perturbation, primes are derivatives with respect to

the radial coordinate r, and

FðrÞ � k � B0 ¼ kzBz þ
m

r

� �
Bh �

Bz

R0

n� m

q

� �

HðrÞ � r3

k2
z r2 þ m2

gðrÞ � ðm
2 � 1ÞrF2

k2
z r2 þ m2

þ k2
z r2

k2
z r2 þ m2

� rF2 þ rF

2 kzBz �
m

r
Bh

� �
k2

z r2 þ m2
þ 2l0

dp

dr

0
B@

1
CA
:

(13)
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As in the slab model, this ideal MHD equation is given for a

single, decoupled mode (m, n) and is singular when

Fðr�Þ ¼ 0, that is, where qðr�Þ ¼ m=n. (Note that

qðrÞ � �rBzðrÞ
R0BhðrÞ

(14)

in cylindrical geometry, and we have implicitly taken kz � n
R0

above.) As in the slab model, we impose Dirichlet boundary

conditions

wð0Þ ¼ wð2aÞ ¼ 0; (15)

where r ¼ 2a is the plasma edge. (a can be regarded as a

characteristic lengthscale of the problem; here, it is just a

half-radius.)

Because the cylindrical Newcomb equation is unimodal,

it would suffice to continue describing D0 as a scalar parame-

ter in the cylindrical case, as we did in the slab model. As

preparation for the toroidal D0 matrix, however, we instead

find it instructive to define a cylindrical D0 matrix in the dis-

cussion that follows.

We must first examine the asymptotic solutions of our

ODE near its singular point r�. Leading order terms of the

ODE in Eq. (12) form a simpler asymptotic ODE near r�.
For ease of presentation, we assume a pressureless b ¼ 0

cylindrical plasma. Letting primes denote derivatives with

respect to the dimensionless parameter s � r�r�

a , this leading

order ODE is given by

w00 � j
s
w ¼ 0; (16)

where the constant j ¼ lims!0ða2sÞ � 1
H ½

g
F2 þ 1

F ðHF0Þ0�. This

ODE is easy to solve with a Frobenius expansion, yielding

the following asymptotic solutions for the full (b ¼ 0) ODE

Eq. (12) at the singular surface r�3

wBðrÞ 
 1þ js ln jsj þ 1

2
j2s2 ln jsj � 3

4
j2s2 þ � � � ;

wSðrÞ 
 sþ 1

2
js2 þ 1

12
j2s2 þ � � � :

(17)

These solutions are termed the “big” and “small” solutions,

respectively, due to their behavior as s! 0. At a distance

s ¼ 6d from the singular surface, the asymptotic expansions

provide “initial conditions” for Eq. (12) on either side of the

singular surface(
wB

w0B

 !
ð6dÞ 


16jd ln jdj
jðln jdj þ 1Þ

 !
;

wS

w0S

 !
ð6dÞ 
 6dþ 1

2
jd2

16jd

0
@

1
A): (18)

Given the linearity of the ODE, the full BVP is solved

independently on the left and right sides of the rational sur-

face by some linear combination of the two solutions. The

asymptotic expansions therefore provide a linearly indepen-

dent set of initial conditions at (a small distance from) the

singular surface, whose integrations out to the boundaries

form a complete basis for the ODE solutions. We denote

these solutions on either side of r� by

wðr < r�Þ � wLðrÞ ¼ALwSðrÞ þ BLwBðrÞ
wðr > r�Þ � wRðrÞ ¼ARwSðrÞ þ BRwBðrÞ:

(19)

It is instructive to count the degrees of freedom (DOF)

that must be determined to solve this BVP. The coefficients

fAL;AR;BL;BRg constitute four DOF in the BVP, and two of

these are determined by the boundary conditions at fw ¼ 0;
w ¼ 2ag. This leaves two DOF undetermined. The ambigu-

ity of these two remaining DOF (which arises from the dis-

continuity of our ODE at its singular point) is resolved by

storing matching data for our asymptotic solutions in D0, as

we now describe.

To span the remaining two “dimensions” of our BVP

solution space (and thereby allow for the most general possi-

ble inner layer solutions), we examine two linearly indepen-

dent assignments for the big solution coefficients

BL

BR

� �
2 1

0

� �
;

0

1

� �	 

: (20)

Assigning the big solution coefficients to one vector or the

other in Eq. (20), we solve the BVP for the remaining coeffi-

cients fAL;ARg that satisfy the boundary conditions at the axis

and plasma edge. In this way, we define the D0 matrix as

D0ij � Aj jBk ¼ dik and wð0Þ ¼ wð2aÞ ¼ 0
� �

; (21)

where i; j; k 2 fL;Rg.
In short, row i of this 2� 2 D0 matrix describes the small

solution coefficients necessary to solve the BVP when the

coefficient of big solution i is set to 1 and the other is set to

0. We have thus resolved the two ambiguous DOF of our

BVP simply by solving two linearly independent assign-

ments of these DOF. The information describing the relation-

ships of the big and small solutions for each independent

assignment is then stored in each row of the D0 matrix.

As described in Ref. 13, in the cylindrical model, this

definition of D0 turns out to be a rather trivial extension of

our earlier definition Eq. (9). In particular, the left and right

side BVPs are independent of one another, such that the

2� 2 cylindrical D0 matrix is diagonal. It contains little more

information than it would had when we simply continued to

define D0 as in Eq. (9). [Note that Eq. (9) implicitly sets

BL ¼ BR ¼ 1 and defines D0 ¼ AR � AL.] However, defining

the cylindrical D0 in this way is pedagogically useful, as it

makes the toroidal D0 a natural extension.

We will not pursue the dispersion relation of the cylin-

drical tearing mode here nor discuss the asymptotic matching

in its derivation. Suffice it to say that, as in Eq. (11) of the

slab model, there is a one-to-one correspondence in the sign

of c with D0, and D0 is a straightforward indicator of tearing

mode stability as a result.

C. The toroidal D0

The mathematical description of the toroidal tearing

mode is rather more involved, and a formidable derivation of
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its dispersion relations [analogous to Eq. (11) above] can be

found in Ref. 10. For our present purposes, we note that the

toroidal analog of the ideal MHD Eq. (7) is given by a matrix

Newcomb equation

FN0 þ KNð Þ0� K†N0 þGNð Þ ¼ 0 (22)

—see Eq. (21) of Ref. 2—where primes are derivatives with

respect to the radial coordinate w, and the w-dependent

matrices fF ¼ F†;G ¼ G†; andK 6¼ K†g 2 CM�M represent

the physics associated with the ideal plasma response to the

plasma displacement N, where N 2 CM�1 is a vector of

Fourier amplitudes for a (truncated) series of (m, n) modes

comprising a radial perturbation. (Note that this independent
variable use of w as a spatial coordinate stands in contrast to

the dependent variable it represents as a magnetic perturba-

tion in the cylindrical case.) We note immediately that these

(non-diagonal) matrices couple the various Fourier modes in

the toroidal model’s ODE.

To assess the singular behavior of this ODE, we note

from Eq. (29) of Ref. 2 that the matrices can be rewritten as

fF ¼ Q�FQ;K ¼ Q�K; andG ¼ �Gg, where the barred matri-

ces are nonsingular and Q is defined as

Qm;m0 ðwÞ � ðm� qðwÞnÞ � dm;m0 : (23)

[For notational ease, we treat the ordering of modes here as if n
is some integer constant and m ¼ ð1;…;MÞ. This does not

exclude an analysis with multiple n’s and m � 0 but simplifies

the presentation.] Rewriting Eq. (22) as a 2M � 2M
Hamiltonian system, where q � N and p � ðFN0 þ KNÞ, then

emphasizes the ODE’s singularities

(24)

Each rational surface fw� j qðw�Þ ¼ m=ng, where the

diagonal matrix Q loses full rank, evidently causes singular

behavior in two of the 2M linearly independent solutions to

this Hamiltonian system—in some vector component labeled

by qs and its conjugate momentum ps. [Note using Eq. (24)

that the ‘th Fourier mode can be removed from the analysis

by deleting the ‘th and ð‘þMÞth rows of the above matrix

equation, so that singular pairs qs and ps are always separated

by M indices.] It will be useful to have a compact notation

for the toroidal Newcomb equation, Eq. (24)

u0 ¼ Lu; where u � q

p

� �
2 C2M: (25)

The 2M asymptotic solutions at the singular (rational)

surfaces of Eq. (25) are worked out in Ref. 2, Eqs. (30)–(47)

via a matrix Frobenius method due by Turrittin.17 We will

not repeat that analysis here, but its results are easily

described. We let w� denote one such singular rational sur-

face. Then, as w! w�, the ð2M � 2Þ “nonresonant” (i.e.,

nonsingular) asymptotic solutions scale as ðw� w�Þ0 
 1. In

fact, they approach the orthonormal basis spanning the

ð2M � 2Þ-dimensional “nonresonant subspace” at the singu-

lar surface

lim
w!w�

u‘ðwÞ½ �k ¼ d‘k; (26)

where 0 � ‘; k � 2M and ‘ 62 fs; sþMg. Here, u‘ðwÞ
2 C2M is one of the ð2M � 2Þ nonresonant modes in the

neighborhood of w�, identified by the index—‘—of the

mode’s nonvanishing component at w�. s is the index of the

singular Fourier mode at w�. ½u‘ðwÞ�k is the kth element of

the 2M-component vector u‘ðwÞ.
As w! w�, the remaining two “resonant” modes scale

as ðw� w�Þ�
1
2
6
ffiffiffiffiffiffiffi
�DI

p
, where DI is the toroidal Mercier crite-

rion.18 For most (ideal-MHD-stable) toroidal geometries, DI

< � 1
4
, so that the resonant modes again split into “small”

and “big” solutions, with the former having vanishing norm

as w! w� and the latter now having infinite norm in the

same limit. The big solution corresponds to a mode with the

infinite qs component at w�; qsðw�Þ ¼ 1 and the small solu-

tion to a mode with the vanishing ps component, psðw�Þ ¼ 0.

We may therefore represent the two resonant solutions as

lim
w!w�

usðwÞ½ �k ¼ dsk � 1 ; lim
w!w�

usþMðwÞ½ �k ¼ 0: (27)

In summary, the set of all 2M asymptotic expansions,

when mapped to w ¼ w�, looks like the columns of the fol-

lowing 2M � 2M diagonal matrix:

lim
w!w�

UðwÞ ¼

1s�1

1
1M�1

0

1M�s

2
66664

3
77775; (28)

where 1n represents the n� n identity matrix and UðwÞ is the

fundamental matrix of solutions in the neighborhood of w�

with columns given by fu‘g.
Note that, because the toroidal Hamiltonian system cou-

ples all modes, all of the 2M modes asymptotically expanded

at some distance � away from w� are nonzero in every vector

component. However, as if we somehow managed to integrate

our singular ODE all the way to the singularity, we note that

such a mode at w ¼ w�6� maps at w ¼ w� to one of the

matrix columns of Eq. (28)—with only one nonzero compo-

nent (if any). In this sense, the asymptotic expansion stands in

as a method of integration for our ODE in the singular inter-

vals w 2 ½w� � �;w�� and w 2 ½w�;w� þ ��, as if initialized at

w ¼ w� with the singular matrix columns of Eq. (28).

Having described the asymptotic expansions at a rational

surface of a toroidal equilibrium, we can now define the BVP

whose solutions produce D0 in toroidal geometry. We impose

the following boundary conditions on each subinterval:

qðwaxisÞ ¼ 0

qðwedgeÞ ¼ 0

lim
d!0

q

p

 !
ðws� dÞ ¼ lim

d!0

q

p

 !
ðwsþ dÞ; 8 fqj 6¼ qs;pj 6¼ psg

lim
d!0

q

p

 !
ðwi� dÞ ¼ lim

d!0

q

p

 !
ðwiþ dÞ; 8 fqj;pjg:

(29)
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In the above, ws and wi reflect the 2M� 2 boundary condi-

tions specified on each singular surface, and 2M boundary

conditions specified on each “interstitial” surface, respec-

tively. (See Fig. 1.)

We treat the general case of N singular surfaces

fw1;…;wNg, which divide ½0; 1� into Nþ 1 subintervals. We

split every interval in half again, creating a total of 2N þ 2

subintervals, such that only one side of each subinterval is

a singular surface or boundary. It is convenient to label

these intervals interchangeably as i 2 fRaxis; L1;R1;…;
LN;RN; Ledgeg or i 2 f1;…; 2N þ 2g.

As we defined wL and wR in the cylindrical case, we

define the function ui as representing the BVP solution on

the ith subinterval of the toroidal model and vanishing else-

where. The BVP solution can therefore be written as

uðwÞ ¼
X2Nþ2

i¼1

uiðwÞ ¼
X2Nþ2

i¼1

UiðwÞ � ai ¼
X2Nþ2

i¼1

X2M

‘¼1

ai
‘u

i
‘ðwÞ;

(30)

where ui
‘ is the ‘ th mode on the i th subinterval and ai

‘ 2 C is

the weight of this mode in the linear ODE’s solution. As before,

the ‘th mode ui
‘ is identified by the index of its nonvanishing

component at the rational surface abutting subinterval i. (For

the first and last subintervals, which do not terminate on ratio-

nal surfaces, u1
‘ and u2Nþ2

‘ are identified by their nonvanishing

‘th component at w ¼ 0 or w ¼ 1, respectively.) UiðwÞ and ai

represent the fundamental matrix of solutions and the coeffi-

cient vector, respectively, of subinterval i, which conveniently

package these modes and their coefficients.

We note that the set fai
‘g offers ð2N þ 2Þ � ð2MÞ DOF

for the BVP solution. There are M boundary conditions

imposed at each axis and edge, there are ð2M � 2Þ continuity

conditions imposed at each singular surface, and there are

2M conditions imposed on each “interstitial” surface that

does not appear at a singular point, axis, or edge. This fixes

2 �M þ ð2M � 2Þ � N þ ð2MÞ � ðN þ 1Þ DOF, so that 2N
more conditions are required to specify a BVP solution.

These remaining 2N DOF are specified in the most gen-

eral way possible and comprise the information stored in the

toroidal 2N � 2N D0 matrix. We proceed to solve for D0 as

we did in the cylindrical case, by assigning a linearly inde-

pendent set of values to the 2N coefficients associated with

the 2N big solutions on each side of each singular surface.

For every assignment of values, we solve the BVP and store

in the D0 matrix the resulting set of 2N small solution

coefficients.

The toroidal definition of D0 can therefore be written as

D0ij � aj
sjþM





 ak
sk
¼ dik; qð0Þ ¼ qð1Þ ¼ 0; and

all continuity conditions are satisfied

 !
; (31)

where i; j; k 2 fL1;R1;…; LN;RNg and sj denotes the mode

number of the big solution on interval j. (sj þM denotes the

corresponding small solution mode number.) We note that,

because toroidal modes couple, the behavior of the big solu-

tion at any surface wi may influence the behavior of the small

solution at any other surface. Therefore, D0 is no longer a

diagonal matrix as it was in the cylindrical case.

We have therefore functionally defined D0 as a mecha-

nism to describe the relationships of the singular modes for

all possible solutions of the BVP, thereby providing maximal

flexibility to asymptotically match any model of the singular

modes in the resistive inner region. In this sense, D0 can be

understood to represent the linear responses of small solu-

tions to the “driving force” of the big solutions.13 These reso-

nant modes are most important in determining the behavior

of the resistive layer.

The relationship of this matrix to the physics of tearing

mode stability is no longer as clear as it was in the case of

the slab or cylindrical model. For starters, this relationship

depends on the inner region model that is used for the resis-

tive layer. Furthermore, the coupling of modes in the toroidal

geometry is what leads to the D0 matrix being nondiagonal.

A resonant perturbation at one surface of the plasma affects

the resonant perturbations at every other rational surface due

to their coupling with nonresonant modes which are every-

where continuous.

As a result, the D0 matrix in toroidal geometry alone

does not describe the equilibrium’s tearing stability. The

inner region equations must be matched against the informa-

tion in D0 to achieve a full picture. The matching procedure

has been discussed at length in the previous literature,10,19

and it is still an active area of research. However, this discus-

sion past D0 lies beyond the scope of this work.

III. CALCULATION OF D0 IN A CYLINDRICAL
EQUILIBRIUM

Having carefully defined in Sec. II the D0 matrix in slab,

cylindrical, and toroidal geometries, we now describe the

numerical methods we have adapted to calculate D0. Before

turning in Sec. IV to the numerical methods employed for

the toroidal equilibrium, we first describe our calculation in

a cylindrical geometry.

We assume a monotonic q profile, so that there exists

only one singular surface for a given Fourier mode in the

cylindrical plasma. We furthermore assume a pressureless

plasma, so that the asymptotic expansions in Eq. (17) are

valid. (This limitation is by no means necessary but is useful

for ease of presentation.) Our procedure for generating D0

then proceeds as follows:

FIG. 1. This diagram models our interval setup for the toroidal geometry.

Solid red lines represent singular surfaces (where continuity is imposed for

the 2M � 2 nonresonant modes), while dashed lines represent “interstitial”

nonsingular surfaces (where continuity is imposed for all 2M modes). The

magnetic axis corresponds to w ¼ 0, while the plasma edge corresponds to w
¼ 1.
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1. Form the 2� 2 fundamental matrices of solutions—

XLðs ¼ ��Þ andXRðs ¼ þ�Þ—on each side of the singular

surface, initialized with the linearly independent set of

asymptotic expansions in Eq. (17)

XR;Lð6�Þ �
wBð6�Þ wSð6�Þ

w0Bð6�Þ w0Sð6�Þ

 !
	

1 6�

j ln j�j 1

 !
:

(32)

2. “Shoot” these fundamental matrices from the singular sur-

face to the profile boundaries by integrating the ODE in

Eq. (12), mapping XLðs ¼ ��Þ to XLðr ¼ 0Þ and XRðs
¼ �Þ to XRðr ¼ 2aÞ.

3. Leveraging the linearity of the ODE, find the linear com-

bination of columns of XLð0Þ and XRð2aÞ necessary to sat-

isfy the boundary conditions wð0Þ ¼ wð2aÞ ¼ 0.

4. Scale the resulting coefficients to set the first column’s

(i.e., the big solution’s) coefficient to 1 and store the sec-

ond column’s (the small solution’s) coefficients in the D0

matrix.

Note that only one shot is required (on each side of the sin-

gular surface) in which the big solution coefficient is set to 1

because the independence of solutions in the two regions of

the cylindrical model renders all other choices for the big

solution coefficient trivial.

In Figs. 2 and 3, we compare the results of the above

method against the results of Refs. 3 and 4, adopting these

references’ definition of D0. In particular, these plots define

D0 ¼ ðAR � ALÞ, the difference of the small coefficients on

the diagonal of our D0 matrix, as defined in Eq. (21). We find

that we replicate previous results despite our modifications

to the solution method.

The helpfulness of shooting asymptotic solutions away

from the singular surfaces is evident upon inspection of the

expansions in Eq. (32). In particular, we note that, despite

their disparate behavior near the singularity, the two modes

approximate the solution subspace ð 0
1
Þ as �! 0. When inte-

grating any mode that has a nonzero projection along the big

solution, therefore, this projection can grow to dominate the

mode upon the approach to the singular surface. Similarly,

for modes that have any projection along the small solution,

such a projection can dominate the solution when integrated

away from the singular surface. To maintain the linear inde-

pendence of two different modes, therefore, it is more reli-

able numerically to explicitly “pick out” the big and small

solutions, which remain independent as they are integrated

away from the singularity.

By implementing the fundamental matrix technique of

Ref. 1 and adopting the “shooting away” method of Nishimura
et al.3 (while avoiding the slowness and cycling of Newton’s

iteration), we have thus developed a more robust method for

D0 calculation in the cylinder.

IV. CALCULATION OF D0 IN A 2D TOROIDAL
EQUILIBRIUM

We now describe the numerical methods of STRIDE for

the calculation of D0 in a toroidal geometry. The cylindrical

solution methods of Sec. III anticipate the most salient fea-

tures of our toroidal calculation. However, we must organize

the toroidal calculation to account for the many simultaneous

constraints of the new geometry.

The toroidal D0 matrix is constructed from solutions to

the ODE of Eq. (24). In particular, we use Eq. (24) to define

a BVP with boundary and continuity conditions given by Eq.

(29). We then solve this BVP as follows:

1. On each side of every singular surface wi, we initialize at

wi6� a fundamental matrix of solutions whose columns

are comprised by the asymptotic expansions described in

Eqs. (26)–(28)

FIG. 2. This chart depicts m=n ¼ 2=1; a=R0 ¼ 0:05 solutions to the cylin-

drical Newcomb equation (12) for a magnetic perturbation w, scanned over

an increasingly pitch-angled q profile: qðxÞ ¼ q0ð1þ x2Þ. The location of

the singular surface (noted by a dot for each scan) moves inward as q0

increases. x � r
a is a dimensionless radial coordinate. This chart matches that

in Fig. 1(a) of Ref. 3 and Fig. 1 of Ref. 4.

FIG. 3. A chart of D0 values achieved over the same equilibrium scan as Fig.

2, depicting increasingly RMHD-unstable (D0 > 0) equilibria as q0

increases. This chart matches that in Fig. 1(b) of Ref. 3 and Fig. 2 of Ref. 4.
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ULiðwi � �Þ � Uðw�i ;w�i Þ and

URiðwi þ �Þ � Uðwþi ;wþi Þ:
(33)

We use the notation w6
i � wi6�, and let UðwB;wAÞ repre-

sent the propagator of the ODE from w ¼ wA to w ¼ wB,

a fundamental matrix of solutions as described in Ref. 1.

[The notation UiðwÞ was introduced in the discussion fol-

lowing Eq. (30).]

2. At the magnetic axis and plasma edge, we further initial-

ize fundamental matrices of modes which span the

subspace of solutions consistent with the boundary condi-

tions, qð0Þ ¼ qð1Þ ¼ 0. We denote these fundamental

matrices by Uð0; 0Þ and Uð1; 1Þ. They are 2M �M matri-

ces which take the form

Uð0; 0Þ ¼ Uð1; 1Þ ¼ 0M

1M

� �
: (34)

3. By integrating Eq. (24), we “shoot” each initialized fun-

damental matrix across its interval, ending at the inter-

val’s “interstitial” surface, which we label as ai. We

denote by Uðai�1;w
�
i Þ, for example, the 2M � 2M funda-

mental matrix initialized at ðwi � �Þ with the asymptotic

expansion Uðw�i ;w
�
i Þ and propagated backward toward

ai�1 (see Fig. 4).

4. Continuity in all 2M modes is imposed at interstitial surfa-

ces by demanding, for example, that

Uðai;w
þ
i Þ � aRi ¼ Uðai;w

�
iþ1Þ � aLiþ1 : (35)

As introduced in Eq. (30), ai 2 C2M represents the coeffi-

cients weighting each mode in subinterval i.
5. Continuity in 2M � 2 modes is imposed at each rational

surface simply by demanding that

aLi

‘ ¼ aRi

‘ (36)

for each mode ‘ 62 fsLi
; sLi
þMg ¼ fsRi

; sRi
þMg. The

simplicity of this continuity condition is the result of the

fact that, as discussed after Eq. (28), the asymptotic

expansions stand in for the integration of modes which, at

w ¼ wi, form the matrix columns of Eq. (28). In effect,

the expansions serve as maps which preserve the identi-

ties of the modes born at the singular surface.

6. These conditions are solved simultaneously by forming

them into a sparse matrix representation of the BVP, as in

Eq. (37).

7. This sparse matrix equation is solved 2N times, with each

linearly independent assignment of big solution coeffi-

cients. The resulting small solution coefficients are stored

in the D0 matrix.

For ease of exposition, we explicitly notate the sparse

matrix equation for an (N¼ 2)-singular-surface problem,

but the construction easily generalizes to an arbitrary num-

ber of surfaces. We let a–i represent the second half of the

2M mode coefficients on interval i: fai
Mþ1;…; ai

2Mg. [This

subset of coefficients is needed on the first and last inter-

vals, on which only half of the 2M modes satisfy the bound-

ary conditions qð0Þ ¼ qð1Þ ¼ 0.] To enforce continuity in

all nonresonant modes at singular surfaces, we denote by

1si

siþM the ð2M � 2Þ � 2M matrix formed by deleting rows

fsi; si þMg of the identity matrix 12M. Finally, we denote

by 1si
the 1� 2M row vector for which the only nonzero

entry is 1 in the sith component—the “big solution” compo-

nent at wi.

Thus, we may write our BVP as

(37)

We have notated the number of rows and columns in each

block.

Each block row of this matrix equation represents a set

of continuity criteria at the interface of two intervals, and the

last four rows represent the assignment of big solution coeffi-

cients. The bracketed vector in the RHS of Eq. (37) repre-

sents a case when the big solution on L1 is assigned a

coefficient of 1, and the remaining big solution coefficients

are set to 0. This setting must be permuted to span all line-

arly independent cases, and the BVP must therefore be

solved four times with varying RHS. In the above example, a

row of the resulting 4� 4 D0 matrix would be composed of

the solved-for small solution coefficients: faL1

sL1
þM; aR1

sR1
þM;

aL2

sL2
þM; a

R2

sR2
þMg.
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This sparse matrix BVP solution is made possible by the

linearity of the ideal MHD ODE—Eq. (24)—that we solve

in the external regions. Asymptotic expansions at singular

points of the ODE, and the abundant use of state transition

matrices to subdivide the integration interval and enforce

continuity conditions, provide a robust solution for the calcu-

lation of D0 in toroidal geometry.

We also note that the ideal-wall boundary condition for

D0—specified in step 2 of the above procedure—is not the

only possible choice. In particular, given a vacuum response

matrix WV from a code such as VACUUM,20,21 the choice

of the plasma edge boundary condition

Uð1; 1Þ ¼ 1M

�WV

� �
(38)

solves for the D0 matrix consistent with the total minimiza-

tion of plasma and vacuum energy, dW, as described in Eq.

(6) of Ref. 5.

We compare the results of our STRIDE code with those

of resistive DCON5 using DIII-D equilibria reconstructions

generated by EFIT22 and CAKE,23 respectively—the latter

of which is a fast kinetic equilibrium solver currently under

development and intended for real-time stability calcula-

tions. In so doing, we bootstrap resistive DCON’s own

benchmarking against various resistive MHD codes, includ-

ing the MARS9 and PEST24,25 codes. In cases when data are

available from both the STRIDE code and resistive DCON,

Figs. 5 and 6 demonstrate strong agreement on the values of

D0, particularly for low-q surfaces within the plasma.

V. NUMERICAL ADVANTAGES AND RESULTS OF THE
STRIDE CODE

For many years, the numerical challenge of the D0 BVP

has been approached by finite element Galerkin meth-

ods.5,11–13 The Galerkin discretization of elliptic partial dif-

ferential equations (PDEs) is a variational method that

recasts a PDE in its weak form—in particular as a bilinear

form which must be minimized by solving for a weighting of

FIG. 4. A schematic of the propagators Uð�; �Þ for an equilibrium with N¼ 2

rational surfaces, initialized at the axis, at the edge, and at w6
i � wi6� for

all singular wi. These propagators are “shot” across their subintervals by

integrating the ODE Eq. (24) forward and backward, as appropriate. The

final state of these propagators, whose columns are the final values of

the integrated modes at the “interstitial” surfaces ai, is then used to construct

the sparse matrix representation of the BVP, Eq. (37).

FIG. 5. This chart depicts

Re½diagðD0Þ�, the real part of the D0

matrix diagonal, for q¼ 2 and q¼ 3

surfaces of an EFIT22 reconstruction

for DIII-D shot #156746. It reveals

strong agreement between resistive

DCON and the new state transition

matrix code, STRIDE. Notationally,

the time trace D022L denotes the real

part of the D0 diagonal element corre-

sponding to the left side of the q¼ 2

surface. The D0 BVP was solved for

this chart with the assumption of an

ideal wall at the plasma edge.
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discrete basis functions. The existence and uniqueness of sol-

utions for this minimization are dependent on the bilinear

form, satisfying a positive-definiteness requirement. In mod-

ern treatments, this positive-definiteness is referred to as the

coercivity of the bilinear form.26

As discussed in Ref. 12, the Galerkin discretization of

the cylindrical ideal MHD Newcomb equation16 employs a

bilinear form that measures the plasma response energy

W(u, u) of a magnetic perturbation u

Wðu; vÞ �
ð1
0

fu0v0 þ guv
� �

dr: (39)

As defined, however, the bilinear form W is only positive-

definite for ideal-MHD-stable equilibria. The Galerkin dis-

cretization of the cylindrical Newcomb equation—as formu-

lated in Ref. 12—therefore, is not guaranteed to produce a

solution for ideal-MHD-unstable equilibria. Resistive

DCON’s Galerkin formulation draws from a comparable

Galerkin discretization, so that its solution for D0 in ideal-

MHD-unstable equilibria is similarly susceptible.

In Fig. 6, we display matrix elements of D0 over several

time slices of DIII-D shot #163518, as measured by STRIDE
and resistive DCON. For most data points, the two codes

show strong agreement. In this particular shot, however, for

equilibria with a q¼ 1 surface, the direct integration

approach of STRIDE converges, while the Galerkin

approach does not. Most of the equilibria with qð0Þ < 1 in

Fig. 6 are also ideal-MHD-unstable, as determined by the

Newcomb criterion.2

Unlike the weak form of the Galerkin method, STRIDE
solves the perturbed ideal MHD equations in their strong
form—directly integrating the matrix Newcomb Eq. (22).

Numerical experimentation has demonstrated that STRIDE
has comparable ease solving for D0 in the presence of a q¼ 1

surface or in an ideal-MHD-unstable equilibrium as it does

in better-conditioned equilibria. The wide applicability of

STRIDE is useful in several contexts:

1. it affords a robust tearing stability analysis for ITER,

where some operation conditions are expected to have

qð0Þ < 1;

2. although it bears noting that Eq. (22) is itself derived

assuming ideal MHD stability (i.e., xsA � 1), STRIDE
still affords an effective time-series analysis of tearing

stability during tokamak shots that exhibit ideal MHD

instabilities which nonlinearly saturate—e.g., sawtooth

oscillations; and

3. it enables a high-throughput real-time stability analysis

that is robust to measurement error, as required in a con-

trol algorithm.

In addition to its improved robustness, the STRIDE’s

state transition matrix method affords an immediate paralleli-

zation of the ideal MHD ODE integration, as described in Eq.

(29) of Ref. 1. In particular, each subinterval depicted in Fig.

4 may be further subdivided—as finely as desired—with each

subdivision integrated in parallel. The state transition matrices

independently integrated on each subinterval can then be mul-

tiplied together to propagate the ODE solution across the

interval. For example, this subdivision takes the form

xðw2Þ ¼ Uðw2;w0Þxðw0Þ ¼ Uðw2;w1ÞUðw1;w0Þxðw0Þ;
(40)

where the columns of U comprise linearly independent ODE

solutions, as above. In general, the calculation time for such

matrix multiplication considerably outpaces the numerical

integration it replaces.

We note that the parallel integration of intervals in

the manner described above scales with the availability

of additional processors. Although more work can further

reduce thread overhead, Fig. 7 depicts the significant

reduction in solution time achieved by an initial parallel

implementation of STRIDE, with a fastest run-time under

500 ms. STRIDE integrates using the complex adaptive

integrator ZVODE,27 whose accuracy is tunable up to

machine precision.

We surmise that additional gains in computation speed

would follow from further optimizing analytical features of

our code. For example, the self-adjointness of the ideal MHD

force operator may be exploited to reduce the computational

burden of ODE integration. In particular, the reciprocity rela-

tions of the D0 matrix discussed in Refs. 13 and 28 could

reduce the degrees of freedom of the D0 BVP. Similarly, the

square-root algorithm29 for Riccati problems could reduce the

computational burden of ODE integration for a Riccati formu-

lation1 of the self-adjoint ideal MHD problem.

FIG. 6. These time traces depict Re½diagðD0Þ� for low-q surfaces of CAKE23

equilibrium reconstructions over several timeslices of DIII-D shot #163518.

Sections of the data are emphasized in which the STRIDE code successfully

generated the D0 matrix, while the Galerkin method did not converge. In this

shot, such divergences occur for the most part when qð0Þ < 1. Over half of

the qð0Þ < 1 cases above are, as measured by the Newcomb criterion,2

unstable to ideal MHD m¼ 1 internal kink modes as well.
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As a final remark, we note that the matrix (represented

for the N¼ 2 case) in Eq. (37) has a reliable sparsity pattern

that may enable specialized sparse matrix solutions. Such

enhancements are less important for tokamak equilibria,

whose modes are uncoupled across toroidal mode numbers n
(and which therefore have comparatively small matrices to

solve). However, tearing mode analysis in stellarator equilib-

ria may benefit from attention to this feature.

VI. SUMMARY AND CONCLUSION

We have introduced STRIDE, a robust and effective

code to solve the intractable D0 boundary value problem. In

our presentation of this solution, we have reviewed at length

the definition of D0 in the slab, cylindrical, and toroidal

geometries and emphasized the varying role D0 plays in

determining tearing stability.

We believe that, due to the speed and robustness of its

state transition matrix methods, STRIDE substantially

improves upon previously known solution methods for D0.
We have demonstrated that the numerical techniques of Ref.

1—developed for the parallel solution of ideal MHD equa-

tions—are sufficiently flexible to resolve the asymptotic

expansions necessary for D0 resistive MHD calculations. We

have also emphasized an interpretation of linear ODE

asymptotic expansions as substituting for integration over

small intervals that terminate on singular points; this profit-

able point of view helps illuminate how such expansions are

to be used in ODE solutions.

We have favorably benchmarked the STRIDE’s state

transition matrix method against previous well-

established solutions for D0 in both cylindrical and

toroidal geometries. STRIDE has demonstrated accuracy

in all our tests.

To expand the scope of applicability of our work, further

effort is also required to improve the reliability of asymptotic

expansions near rational surfaces in low-b plasmas. Such

improvements would likely enable more accurate tearing stabil-

ity analysis in the high-q edge regions of tokamak equilibria.

With a BVP solution time of less than 500 ms, we hope

that our efforts help enable future active feedback methods

for control of tokamak plasmas. Alongside fast equilibrium

reconstruction tools such as CAKE,23 this work helps dem-

onstrate the numerical feasibility of solving challenging ideal

and resistive MHD stability analyses in a timescale compara-

ble to the tokamak’s stable equilibrium evolution time and

for a wider class of equilibria than previously achieved.
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